
 Computer Graphics

 Lecture 16

Clipping Types Continued

Line Clipping

Figure 6-7 illustrates possible relationships between line positions and a
standard rectangular clipping region. A line clipping procedure involves
several parts. First, we can test a given line segment to determine whether
it lies completely inside the clipping window. If it does not, we try to
determine whether it lies completely outside the window. Finally, if we
cannot identify a line as completely inside or completely outside, we must
perform intersection calculations with one or more clipping boundaries.
We process lines through the "inside-outside'' tests by checking the line
endpoints. A line with both endpoints inside all clipping boundaries, such
as the line from P1 to P2 is saved. A line with both endpoints outside any
one of the clip boundaries (line P3P4 in Fig. 6-7) is outside the window. All
other lines cross one or more clipping boundaries, and may require
calculation of multiple intersection points. To minimize calculations, we try
to devise clipping algorithms that can efficiently identify outside lines and
reduce intersection calculations.

For a line segment with endpoints (x1, y1) and (x2, y2) and one or both
endpoints outside the clipping rectangle, the parametric representation

could be used to determine values of parameter u for intersections with
the clipping boundary coordinates. If the value of u for an intersection with
a rectangle boundary edge is outside the range 0 to 1, the line does not
enter the interior of the window at that boundary. If the value of u is within
the range from 0 to 1, the line segment does indeed cross into the clipping
area. This method can be applied to each clipping boundary edge in turn
to determine whether any part of the line segment is to be displayed. Line
segments that are parallel to window edges can be handled as special
cases.

Cohen-Sutherland Line Clipping
This is one of the oldest and most popular line-clipping procedures.
Generally, the method speeds up the processing of line segments by
performing initial tests that reduce the number of intersections that must
be calculated. Every line endpoint in a picture is assigned a four-digit binary
code, called a region code that identifies the location of the point relative
to the boundaries of the clipping rectangle. Regions are set up in reference
to the boundaries as shown in Fig. 6-8. Each bit position in the region code
is used to indicate one of the four relative coordinate positions of the point
with respect to the clip window: to the left, right, top, or bottom. By
numbering the bit positions in the region code as 1 through 4 from right to
left, the coordinate regions can be correlated with the bit positions as

 bit 1: left
 bit 2: right
 bit 3: below
 bit 4: above

A value of 1 in any bit position indicates that the point is in that relative
position; otherwise, the bit position is set to 0. If a point is within the
clipping rectangle, the region code is 0000. A point that is below and to
the left of the rectangle has a region code of 0101.
Bit values in the region code are determined by comparing endpoint
coordinate values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xwmin
the other three bit values can be determined using similar comparisons.
For languages in which bit manipulation is possible, region-code bit values
can be determined with the following two steps: (1) Calculate differences
between endpoint coordinates and clipping boundaries. (2) Use the
resultant sign bit of each difference calculation to set the corresponding
value in the region code. Bit 1 is the sign bit of x –xwmin; bit 2 is the sign
bit of xwmax - x; bit 3 is the sign bit of y – ywmin; and bit 4 is the sign bit of
ywmax - y.
Once we have established region codes for all line endpoints, we can
quickly determine which lines are completely inside the clip window and
which are clearly outside. Any lines that are completely contained within
the window boundaries have a region code of 0000 for both endpoints,
and we trivially accept these lines. Any lines that have a 1 in the same bit
position in the region codes for each endpoint are completely outside the
clipping rectangle, and we trivially reject these lines. We would discard
the line that has a region code of 1001 for one endpoint and a code of
0101 for the other endpoint. Both endpoints of this line are left of the
clipping rectangle, as indicated by the 1 in the first bit position of each
region code. A method that can be used to test lines for total clipping is
to perform the logical and operation with both region codes. If the result
is not 0000, the line is completely outside the clipping region.

Lines that cannot be identified as completely inside or completely outside
a clip window by these tests are checked for intersection with the
window boundaries. As shown in Fig. 6-9, such lines may or may not cross
into the window interior. We begin the clipping process for a line by
comparing an outside endpoint to a clipping boundary to determine how
much of the line can be discarded. Then the remaining part of the Line is
checked against the other boundaries, and we continue until either the
line is totally discarded or a section is found inside the window. We set up
our algorithm to check line endpoints against clipping boundaries in the
order left, right, bottom, top.
To illustrate the specific steps in clipping lines against rectangular
boundaries using the Cohen-Sutherland algorithm, we show how the lines
in Fig. 6-9 could be processed. Starting with the bottom endpoint of the
line from P1 to P2

We check P1 against the left, right, and bottom boundaries in turn and
find that this point is below the clipping rectangle. We then find the
intersection point P1

’ with the bottom boundary and discard the line
section from P1 to P1

’. The line now has been reduced to the section from
P1

’ to P2 .Since P2 is outside the clip window, we check this endpoint
against the boundaries and find that it is to the left of the window.
Intersection point P2

’ is calculated, but this point is above the window. So
the final intersection calculation yields P2

’’, and the line from P1
’ to P2

’’
 is

saved. This completes processing for this line, so we save this part and go
on to the next line. Point P3 in the next line is to the left of the clipping
rectangle, so we determine the intersection P3

’, and eliminate the line
section from P3 to P3

’. By checking region codes for the line section from

P3
’ to P4, we find that the remainder of the line is below the clip window

and can be discarded also.

Intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. For a line with endpoint
coordinates (x1, y1) and (x2, y2), the y coordinate of the intersection point
with a vertical boundary can be obtained with the calculation

where the x value is set either to xwmin or to xwmax and the slope of the
line is calculated as m = (y2 – y1) / (x2 – x1). Similarly, if we are looking for
the intersection with a horizontal boundary, the x coordinate can be
calculated as

with y set either to ywmin,, or to ywmax,.

